By Topic

Buffer minimization of real-time streaming applications scheduling on hybrid CPU/FPGA architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Zhu ; R. Inst. of Technol., Stockholm ; Sander, I. ; Jantsch, A.

We address the problem of real-time streaming applications scheduling on hybrid CPU/FPGA architectures. The main contribution is a two-step approach to minimize the buffer requirement for streaming applications with throughput guarantees. A novel declarative way of constraint based scheduling for real-time hybrid SW/HW systems is proposed, while the application throughput is guaranteed by periodic phases in execution. We use a voice-band modem application to exemplify the scheduling capabilities of our method. The experimental results show the advantages of our techniques in both less buffer requirement and higher throughput guarantees compared to the traditional PAPS method.

Published in:

Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE '09.

Date of Conference:

20-24 April 2009