By Topic

Effectiveness of adaptive supply voltage and body bias as post-silicon variability compensation techniques for full-swing and low-swing on-chip communication channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paci, G. ; DEIS, Univ. of Bologna, Bologna ; Bertozzi, D. ; Benini, L.

Adaptive body bias (ABB) and adaptive supply voltage (ASV) have been showed to be effective methods for post-silicon tuning of circuit properties to reduce variability. While their properties have been compared on generic combinational circuits or microprocessor circuit sub-blocks, the advent of multi-core systems is bringing a new application domain forefront. Global interconnects are evolving to complex communication channels with drivers and receivers, in an attempt to mitigate the effects of reverse scaling and reduce power. The characterization of the performance spread of these links and the exploration of effective and power-aware compensation techniques for them is becoming a key design issue. This work compares the variability compensation efficiency of ABB vs ASV when put at work in two representative link architectures of today's ICs: a traditional full-swing interconnect and a low-swing signaling scheme for low-power communication. We provide guidelines for the post-silicon variability compensation of these communication channels.

Published in:

Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE '09.

Date of Conference:

20-24 April 2009