Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A self-adaptive system architecture to address transistor aging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khan, O. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA ; Kundu, S.

As semiconductor manufacturing enters advanced nanometer design paradigm, aging and device wear-out related degradation is becoming a major concern. Negative Bias Temperature Instability (NBTI) is one of the main sources of device lifetime degradation. The severity of such degradation depends on the operation history of a chip in the field, including such characteristics as temperature and workloads. In this paper, we propose a system level reliability management scheme where a chip dynamically adjusts its own operating frequency and supply voltage over time as the device ages. Major benefits of the proposed approach are (i) increased performance due to reduced frequency guard banding in the factory and (ii) continuous field adjustments that take environmental operating conditions such as actual room temperature and the power supply tolerance into account. The greatest challenge in implementing such a scheme is to perform calibration without a tester. Much of this work is performed by a hypervisor like software with very little hardware assistance. This keeps both the hardware overhead and the system complexity low. This paper describes the entire system architecture including hardware and software components. Our simulation data indicates that under aggressive wear-out conditions, scheduling interval of days or weeks is sufficient to reconfigure and keep the system operational, thus the run time overhead for such adjustments is of no consequence at all.

Published in:

Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE '09.

Date of Conference:

20-24 April 2009