By Topic

Path planning for multiple Unmanned Aerial Vehicles using genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Howard Li ; Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, E3B 5A3, Canada ; Yi Fu ; Khalid Elgazzar ; Liam Paull

In the future, autonomous Unmanned Aerial Vehicles (UAVs) need to work in teams to share information and coordinate activities. The private sector and government agencies have implemented UAVs for home-land security, reconnaissance, surveillance, data collection, urban planning, and geometrics engineering. Significant research is in progress to support the decision-making process for a Multi-Agent System (MAS) consisting of multiple UAVs. This paper investigates fundamental issues in path planning for multiple UAVs. MASs with multiple UAVs are typical distributed systems. We propose to use genetic algorithms to plan multiple paths for multiple UAVs. Simulation technologies have become important to the development of aerospace vehicles. In this research, we verify the proposed path planning approach using Matlab. Simulation results demonstrate that the proposed approach is able to plan multiple paths for UAVs successfully.

Published in:

Electrical and Computer Engineering, 2009. CCECE '09. Canadian Conference on

Date of Conference:

3-6 May 2009