By Topic

Energy-efficient multiuser SIMO: achieving probabilistic robustness with gaussian channel uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gan Zheng ; Dept. of Electron. & Electr. Eng., Univ. Coll. London, London ; Kai-Kit Wong ; Tung-Sang Ng

This paper addresses the joint optimization of power control and receive beamforming vectors for a multiuser singleinput multiple-output (SIMO) antenna system in the uplink in which mobile users are single-antenna transmitters and the base station receiver has multiple antennas. Channel state information at the receiver (CSIR) is exploited but the CSIR is imperfect with its uncertainty being modeled as a random Gaussian matrix. Our objective is to devise an energy-efficient solution to minimize the individual users' transmit power while meeting the users' signal-to-interference plus noise ratio (SINR) constraints, under the consideration of CSIR and its error characteristics. This is achieved by solving a sum-power minimization problem, subject to a collection of users' outage probability constraints on their target SINRs. Regarding the signal power minus the sum of inter-user interferences (SMI) power as Gaussian, an iterative and convergent algorithm which is proved to reach the global optimum for the joint power allocation and receive beamforming solution, is proposed, though the optimization problem is indeed non-convex. A systematic scheme to detect feasibility and find a feasible initial solution, if there exists any, is also devised. Simulation results verify the use of Gaussian approximation and robustness of the proposed algorithm in terms of users' probability constraints, and indicate a significant performance gain as compared to the zero-forcing (ZF) and minimum mean square- error (MMSE) beamforming systems.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 6 )