By Topic

Photonic Crystal Fibers With a General Bravais Lattice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mafi, A. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Wisconsin-Milwaukee, Milwaukee, WI, USA ; Koch, K.W.

We present a systematic and comprehensive analysis of photonic crystal fibers with a general Bravais lattice and one hole per unit cell. We show how the lack of a proper separation of lattice shape effects from volume rescaling can lead to an incorrect assessment of the impact of lattice shape. We study and compare the endlessly single-mode, waveguide dispersion, and birefringence properties of the fundamental mode across all lattice shapes. For example, we show that the triangular and square lattice shapes offer the largest critical air-hole radius for the endlessly single-mode operation. We identify a general class of PCFs with large birefringence and show that the total birefringence of the fundamental mode is the result of the competition between two opposing effects: the cladding lattice shape and the asymmetry of the core and can vanish for some PCFs with even very nonsymmetric lattices. We show designs for which the birefringence vanishes even with nonsymmetric lattices and cores.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 21 )