Cart (Loading....) | Create Account
Close category search window

A Micropower Front End for Three-Axis Capacitive Microaccelerometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kamarainen, M. ; Electron. Circuit Design Lab., Helsinki Univ. of Technol., Espoo, Finland ; Saukoski, M. ; Paavola, M. ; Jarvinen, J.A.M.
more authors

This paper presents the measurement results of a micropower switched-capacitor front end that was designed for three-axis capacitive microaccelerometers. The designed front end can reduce the distorting effects of the electrostatic forces and can be used in single-ended and differential modes. The front end was realized with a 0.13-mum bipolar complimentary metal-oxide-semiconductor process. The silicon area of the front end is 0.30 mm2. The measurements show that the functionality of the front end follows the theory in both modes. Consuming 20 muA from a 1.8-V supply, it achieves noise densities of 424, 607, and 590 mug/radic(Hz) in the x-, y-, and z-directions, respectively, when each mass is sampled at 1 kHz in the differential mode.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.