By Topic

A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsung-Han Chan ; Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chong-Yung Chi ; Yu-Min Huang ; Wing-Kin Ma

Hyperspectral unmixing aims at identifying the hidden spectral signatures (or endmembers) and their corresponding proportions (or abundances) from an observed hyperspectral scene. Many existing hyperspectral unmixing algorithms were developed under a commonly used assumption that pure pixels exist. However, the pure-pixel assumption may be seriously violated for highly mixed data. Based on intuitive grounds, Craig reported an unmixing criterion without requiring the pure-pixel assumption, which estimates the endmembers by vertices of a minimum-volume simplex enclosing all the observed pixels. In this paper, we incorporate convex analysis and Craig's criterion to develop a minimum-volume enclosing simplex (MVES) formulation for hyperspectral unmixing. A cyclic minimization algorithm for approximating the MVES problem is developed using linear programs (LPs), which can be practically implemented by readily available LP solvers. We also provide a non-heuristic guarantee of our MVES problem formulation, where the existence of pure pixels is proved to be a sufficient condition for MVES to perfectly identify the true endmembers. Some Monte Carlo simulations and real data experiments are presented to demonstrate the efficacy of the proposed MVES algorithm over several existing hyperspectral unmixing methods.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 11 )