Cart (Loading....) | Create Account
Close category search window
 

Adaptive Mean-Shift Tracking With Auxiliary Particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junqiu Wang ; Inst. of Sci. & Ind. Res., Osaka Univ., Toyonaka, Japan ; Yagi, Y.

We present a new approach for robust and efficient tracking by incorporating the efficiency of the mean-shift algorithm with the multihypothesis characteristics of particle filtering in an adaptive manner. The aim of the proposed algorithm is to cope with problems that were brought about by sudden motions and distractions. The mean-shift tracking algorithm is robust and effective when the representation of a target is sufficiently discriminative, the target does not jump beyond the bandwidth, and no serious distractions exist. We propose a novel two-stage motion estimation method that is efficient and reliable. If a sudden motion is detected by the motion estimator, some particle-filtering-based trackers can be used to outperform the mean-shift algorithm, at the expense of using a large particle set. In our approach, the mean-shift algorithm is used, as long as it provides reasonable performance. Auxiliary particles are introduced to cope with distractions and sudden motions when such threats are detected. Moreover, discriminative features are selected according to the separation of the foreground and background distributions when threats do not exist. This strategy is important, because it is dangerous to update the target model when the tracking is in an unsteady state. We demonstrate the performance of our approach by comparing it with other trackers in tracking several challenging image sequences.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 6 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.