By Topic

Kernel Bandwidth Estimation for Nonparametric Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adrian G. Bors ; Dept. of Comput. Sci., Univ. of York, York, UK ; Nikolaos Nasios

Kernel density estimation is a nonparametric procedure for probability density modeling, which has found several applications in various fields. The smoothness and modeling ability of the functional approximation are controlled by the kernel bandwidth. In this paper, we describe a Bayesian estimation method for finding the bandwidth from a given data set. The proposed bandwidth estimation method is applied in three different computational-intelligence methods that rely on kernel density estimation: 1) scale space; 2) mean shift; and 3) quantum clustering. The third method is a novel approach that relies on the principles of quantum mechanics. This method is based on the analogy between data samples and quantum particles and uses the Schrodinger potential as a cost function. The proposed methodology is used for blind-source separation of modulated signals and for terrain segmentation based on topography information.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 6 )