By Topic

Integrated feature architecture selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steppe, J.M. ; Dept. of Oper. Sci., Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA ; Bauer, K.W. ; Rogers, S.K.

In this paper, we present an integrated approach to feature and architecture selection for single hidden layer-feedforward neural networks trained via backpropagation. In our approach, we adopt a statistical model building perspective in which we analyze neural networks within a nonlinear regression framework. The algorithm presented in this paper employs a likelihood-ratio test statistic as a model selection criterion. This criterion is used in a sequential procedure aimed at selecting the best neural network given an initial architecture as determined by heuristic rules. Application results for an object recognition problem demonstrate the selection algorithm's effectiveness in identifying reduced neural networks with equivalent prediction accuracy

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 4 )