By Topic

Stability analysis of dynamical neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuguang Fang ; Dept. of Electr. Comput. & Syst. Eng., Boston Univ., MA, USA ; Kincaid, T.G.

In this paper, we use the matrix measure technique to study the stability of dynamical neural networks. Testable conditions for global exponential stability of nonlinear dynamical systems and dynamical neural networks are given. It shows how a few well-known results can be unified and generalized in a straightforward way. Local exponential stability of a class of dynamical neural networks is also studied; we point out that the local exponential stability of any equilibrium point of dynamical neural networks is equivalent to the stability of the linearized system around that equilibrium point. From this, some well-known and new sufficient conditions for local exponential stability of neural networks are obtained

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 4 )