By Topic

Learning algorithms for feedforward networks based on finite samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
N. S. V. Rao ; Center for Eng. Syst. Adv. Res., Oak Ridge Nat. Lab., TN, USA ; V. Protopopescu ; R. C. Mann ; E. M. Oblow
more authors

We present two classes of convergent algorithms for learning continuous functions and regressions that are approximated by feedforward networks. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. (1970). The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods (1951). Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems

Published in:

IEEE Transactions on Neural Networks  (Volume:7 ,  Issue: 4 )