By Topic

&thetas;-adaptive neural networks: a new approach to parameter estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Annaswamy, A.M. ; Dept. of Mech. Eng., MIT, Cambridge, MA, USA ; Ssu-Hsin Yu

A novel use of neural networks for parameter estimation in nonlinear systems is proposed. The approximating ability of the neural network is used to identify the relation between system variables and parameters of a dynamic system. Two different algorithms, a block estimation method and a recursive estimation method, are proposed. The block estimation method consists of the training of a neural network to approximate the mapping between the system response and the system parameters which in turn is used to identify the parameters of the nonlinear system. In the second method, the neural network is used to determine a recursive algorithm to update the parameter estimate. Both methods are useful for parameter estimation in systems where either the structure of the nonlinearities present are unknown or when the parameters occur nonlinearly. Analytical conditions under which successful estimation can be carried but and several illustrative examples verifying the behavior of the algorithms through simulations are presented

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 4 )