Cart (Loading....) | Create Account
Close category search window
 

Effects of Personality on Pair Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hannay, J.E. ; Dept. of Software Eng., Simula Res. Lab., Lysaker, Norway ; Arisholm, E. ; Engvik, H. ; Sjoberg, Dag I.K.

Personality tests in various guises are commonly used in recruitment and career counseling industries. Such tests have also been considered as instruments for predicting the job performance of software professionals both individually and in teams. However, research suggests that other human-related factors such as motivation, general mental ability, expertise, and task complexity also affect the performance in general. This paper reports on a study of the impact of the Big Five personality traits on the performance of pair programmers together with the impact of expertise and task complexity. The study involved 196 software professionals in three countries forming 98 pairs. The analysis consisted of a confirmatory part and an exploratory part. The results show that: (1) Our data do not confirm a meta-analysis-based model of the impact of certain personality traits on performance and (2) personality traits, in general, have modest predictive value on pair programming performance compared with expertise, task complexity, and country. We conclude that more effort should be spent on investigating other performance-related predictors such as expertise, and task complexity, as well as other promising predictors, such as programming skill and learning. We also conclude that effort should be spent on elaborating on the effects of personality on various measures of collaboration, which, in turn, may be used to predict and influence performance. Insights into such malleable, rather than static, factors may then be used to improve pair programming performance.

Published in:

Software Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.