Cart (Loading....) | Create Account
Close category search window
 

Parallelizing Itinerary-Based KNN Query Processing in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao-Yang Fu ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Wen-Chih Peng ; Wang-Chien Lee

Wireless sensor networks have been proposed for facilitating various monitoring applications (e.g., environmental monitoring and military surveillance) over a wide geographical region. In these applications, spatial queries that collect data from wireless sensor networks play an important role. One such query is the K-Nearest Neighbor (KNN) query that facilitates collection of sensor data samples based on a given query location and the number of samples specified (i.e., K). Recently, itinerary-based KNN query processing techniques, which propagate queries and collect data along a predetermined itinerary, have been developed. Prior studies demonstrate that itinerary-based KNN query processing algorithms are able to achieve better energy efficiency than other existing algorithms developed upon tree-based network infrastructures. However, how to derive itineraries for KNN query based on different performance requirements remains a challenging problem. In this paper, we propose a Parallel Concentric-circle Itinerary-based KNN (PCIKNN) query processing technique that derives different itineraries by optimizing either query latency or energy consumption. The performance of PCIKNN is analyzed mathematically and evaluated through extensive experiments. Experimental results show that PCIKNN outperforms the state-of-the-art techniques.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.