By Topic

Image recovery and segmentation using competitive learning in a layered network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Phoha, V.V. ; Dept. of Comput. Sci., Univ. of Central Texas, Killeen, TX, USA ; Oldham, W.J.B.

In this study, we have used the principle of competitive learning to develop an iterative algorithm for image recovery and segmentation. Within the framework of Markov random fields (MRFs), the image recovery problem is transformed to the problem of minimization of an energy function; A local update rule for each pixel point is then developed in a stepwise fashion and is shown to be a gradient descent rule for an associated global energy function. The relationship of the update rule to Kohonen's update rule is shown. Quantitative measures of edge preservation and edge enhancement for synthetic images are introduced. As compared to recently published results using mean field approximation, our algorithm shows consistently better performance in edge preservation and comparable performance in enhancing within the boundaries. These results are based on simulation experiments on a set of synthetic images corrupted by Gaussian noise and on a set of real images

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 4 )