Cart (Loading....) | Create Account
Close category search window
 

ANASA-a stochastic reinforcement algorithm for real-valued neural computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vasilakos, A.V. ; Inst. of Comput. Sci., Found. for Res. & Technol.-Hellas, Crete, Greece ; Loukas, N.H.

This paper introduces ANASA (adaptive neural algorithm of stochastic activation), a new, efficient, reinforcement learning algorithm for training neural units and networks with continuous output. The proposed method employs concepts, found in self-organizing neural networks theory and in reinforcement estimator learning algorithms, to extract and exploit information relative to previous input pattern presentations. In addition, it uses an adaptive learning rate function and a self-adjusting stochastic activation to accelerate the learning process. A form of optimal performance of the ANASA algorithm is proved (under a set of assumptions) via strong convergence theorems and concepts. Experimentally, the new algorithm yields results, which are superior compared to existing associative reinforcement learning methods in terms of accuracy and convergence rates. The rapid convergence rate of ANASA is demonstrated in a simple learning task, when it is used as a single neural unit, and in mathematical function modeling problems, when it is used to train various multilayered neural networks

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

Jul 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.