By Topic

An adaptive partial state-feedback controller for RLED robot manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Burg, T. ; Dept. of Electr. & Comput. Eng., Clemson Univ., SC, USA ; Dawson, D. ; Hu, J. ; de Queiroz, M.

An adaptive partial state-feedback controller is designed for rigid-link electrically driven (RLED) robot manipulators. The controller is based on structural knowledge of the electromechanical dynamics of the RLED robot and measurements of link position and electrical winding current in each of the brushed DC link actuators. The proposed controller is designed to adapt for parametric uncertainty in the electromechanical dynamics while utilizing a dynamic filter to generate link velocity tracking error information. The controller, adaptation laws, and the pseudovelocity filter are designed via a Lyapunov-like approach, the benefit of which is that at the end of the design procedure the controller can be mathematically shown to produce semiglobal asymptotic link position tracking. The basic design approach can be extended to many types of multiphase motors

Published in:

Automatic Control, IEEE Transactions on  (Volume:41 ,  Issue: 7 )