By Topic

Performance and gain and phase margins of well-known PID tuning formulas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ho, W.K. ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Gan, O.P. ; Tay, E.B. ; Ang, E.L.

The performance and robustness of well-known PID formulas for process with deadtime to time constant ratio between 0.1 and 1 are discussed in this paper. The Ziegler-Nichols, Cohen-Coon, and tuning formulas that optimize for load disturbance response (integral absolute error, integral squared error, and integral time-weighted absolute error) give gain margins of about 1.5. The phase margins increase from about 30 to 60° as the process deadtime to time constant ratio increases from 0.1 to 1. Tuning formulas that optimize setpoint response give gain margins of about two and phase margins of about 65°. These formulas mostly make use of the proportional-integral derivative (PID) controller zeros to cancel the process poles. Approximate analytical formulas to compute gain and phase margins of PID control systems are also derived in this paper to facilitate online computation which would be particularly useful for implementing adaptive control

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:4 ,  Issue: 4 )