By Topic

Stochastic modeling of fatigue crack dynamics for on-line failure prognostics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Ray ; Dept. of Mech. Eng., Pennsylvania State Univ., University Park, PA, USA ; S. Tangirala

This paper presents a nonlinear stochastic model of fatigue crack dynamics for real-time computation of the time-dependent damage rate and accumulation in mechanical structures. The model configuration allows construction of a filter for estimation of the current damage state and prediction of the remaining service life based on the underlying principle of extended Kalman filtering instead of solving the Kolmogorov forward equation. This approach is suitable for online damage sensing, failure prognosis, life prediction, reliability analysis, decision-making for condition-based maintenance and operation planning, and life extending control in complex dynamical systems. The model results have been verified by comparison with experimentally generated statistical data of time-dependent fatigue cracks in specimens made of 2024-T3 aluminum alloy

Published in:

IEEE Transactions on Control Systems Technology  (Volume:4 ,  Issue: 4 )