By Topic

Design of robust vehicle launch control system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Slicker, J.M. ; Eaton Corp., Southfield, MI, USA ; Loh, Robert N.K.

This paper presents a robust algorithm for vehicle start-up from a stop (commonly referred to as “vehicle launch”) using a microprocessor controlled friction clutch. The design applies an “M-exclusion” concept for achieving guaranteed robust tracking and stability using quantitative feedback theory (QFT). The analytical design technique is carried out in the complex plane and improves on the conventional graphical QFT design. An inner control loop achieves a second-order response within specified tolerances for the driveline and clutch. An outer loop develops a reference signal for the inner loop to achieve smooth lockup. A feedforward signal derived from engine acceleration prevents both over-speed and speed droop in the engine. The control algorithm was programmed into a microprocessor and tested in a heavy duty truck. The truck was driven by experienced drivers, who rated the smoothness and responsiveness of the launch better than achievable with a manual clutch

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:4 ,  Issue: 4 )