Cart (Loading....) | Create Account
Close category search window
 

Some considerations on the accuracy of the nonuniform FDTD method and its application to waveguide analysis when combined with the perfectly matched layer technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Navarro, Enrique A. ; Dept. de Fisica Aplicada, Valencia Univ., Spain ; Sangary, N.T. ; Litva, J.

The accuracy of the finite-difference time-domain (FDTD) technique is measured with respect to the mesh's cell dimensions. The accuracy of the FDTD technique is investigated for those applications that demand the use of nonuniform meshes. The results of simulations suggest that second-order accuracy can be achieved. These simulations are carried out using different boundary conditions. It is observed that the choice of boundary conditions plays a large role in the accuracy that is achieved with the FDTD method. The perfectly matched layer (PML) technique is found to be well suited to waveguide analysis because of its wide bandwidth, and the ease with which it can be implemented with a nonuniform mesh. We apply the nonuniform FDTD method, in combination with the PML technique, to analyze a narrow iris in waveguide

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:44 ,  Issue: 7 )

Date of Publication:

Jul 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.