Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

The Pep-II B-Factory septum quadrupole magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Swan, J.M. ; Lawrence Livermore Nat. Lab., CA, USA ; Harvey, A.R. ; Holmes, R.H. ; Kendall, C.M.
more authors

The PEP-II B-Factory is presently engaged in the design and fabrication of several unique magnets referred to as septum quadrupoles. This family of magnets is required to contain a low energy beam of positrons (3.1 GeV) and a high energy electron beam (9.0 GeV) in adjacent beam pipes housed within a common magnet. One beam will be focused while the other passes through an almost field free region. To do this, an asymmetric magnet must be designed having a pure, high quality quadrupole field in the magnet aperture and an adjacent low field bypass channel. A current sheet or “septum” coil must be placed between these two regions to produce the desired magnetic results. Design of this high current density septum coil presents many challenges since space between the two vacuum beam pipes where the coil must reside is very limited. This paper will describe the overall design of the septum quadrupoles and the solutions employed to achieve the required magnetic performance

Published in:

Magnetics, IEEE Transactions on  (Volume:32 ,  Issue: 4 )