Cart (Loading....) | Create Account
Close category search window

Finite‐size effects in the frequency response of piezoelectric composite plates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alippi, A. ; CNR, Istituto di Acustica ‘‘O. M. Corbino,’’ Via Cassia 1216, I‐00189 Roma, Italy ; Craciun, F. ; Molinari, E.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The resonance spectrum of composite plates made of alternating piezoelectric ceramic and epoxy elements is studied both theoretically and experimentally in the frequency range below the thickness resonance. The transmissivity of the finite structure to plate modes is calculated, taking into account the effective plate velocities of the two constituent materials and the finite number of elements in the structure. The results are in excellent agreement with the electrically excited acoustical resonances of samples with different geometry and number of elements. In particular, the effects of the finite size on the number and frequency of modes, as well as their selection rules in the given experimental setup, are successfully interpreted. New ‘‘surface’’ resonances, attributed to the end elements, are observed in the stopbands when the surface elements have lower impedance.

Published in:

Journal of Applied Physics  (Volume:66 ,  Issue: 7 )

Date of Publication:

Oct 1989

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.