By Topic

On-board phase and modulus calibration of large aperture synthesis radiometers: study applied to MIRAS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Torres, F. ; Dept. of Signal Theory & Commun., Univ. Politecnica de Catalunya, Barcelona, Spain ; Camps, A. ; Bara, J. ; Corbella, I.
more authors

On-board calibration of bidimensional aperture synthesis radiometers with a large number of antennas by the standard correlated noise injection method is technologically very critical because of the stringent requirements on mass, volume, and phase equalization of the noise distribution network. A novel approach, which makes use of a set of uncorrelated noise sources uniformly distributed in the array, is proposed. Each noise source drives correlated noise only to a small set of adjacent antennas. These sets of antennas are overlapped in order to maintain phase and modulus track along the array. This approach reduces drastically mass and volume of the noise distribution network. Moreover, its phase matching requirement is strongly relaxed because it is only necessary within small sets of adjacent antennas. Power stability of the uncorrelated noise sources is also not a stringent requirement. This procedure allows independent phase and modulus calibration by making use of a reduced number of redundant correlations

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:34 ,  Issue: 4 )