By Topic

Precipitation retrieval from spaceborne microwave radiometers based on maximum a a posteriori probability estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
N. Pierdicca ; Dept. of Electron. Eng., Rome Univ., Italy ; F. S. Marzano ; G. d'Auria ; P. Basili
more authors

A retrieval technique for estimating rainfall rate and precipitating cloud parameters from spaceborne multifrequency microwave radiometers is described. The algorithm is based on the maximum a posteriori probability criterion (MAP) applied to a simulated data base of cloud structures and related upward brightness temperatures. The cloud data base is randomly generated by imposing the mean values, the variances, and the correlations among the hydrometeor contents at each layer of the cloud vertical structure, derived from the outputs of a time-dependent microphysical cloud model. The simulated upward brightness temperatures are computed by applying a plane-parallel radiative transfer scheme. Given a multifrequency brightness temperature measurement, the MAP criterion is used to select the most probable cloud structure within the cloud-radiation data base. The algorithm is computationally efficient and has been numerically tested and compared against other methods. Its potential to retrieve rainfall over land has been explored by means of Special Sensor Microwave/Imager measurements for a rainfall event over Central Italy. The comparison of estimated rain rates with available raingauge measurements is also shown

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:34 ,  Issue: 4 )