Cart (Loading....) | Create Account
Close category search window

Evaluation of load sharing in HARTS with consideration of its communication activities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shin, K.G. ; Real-Time Comput. Lab., Michigan Univ., Ann Arbor, MI, USA ; Chao-Ju Hou

We rigorously analyze load sharing (LS) in a distributed real-time system, called HARTS (Hexagonal Architecture for Real-Time Systems), while considering LS-related communication activities, such as task transfers and state-change broadcasts. First, we give an overview of the general distributed real-time LS approach described previously, and then adapt it to HARTS by exploiting the topological properties of HARTS. Second, we model task arrival/completion/transfer activities in HARTS as a continuous-time Markov chain from which we derive the distribution of queue length and the rate of generating LS-related traffic-task transfer-out rate and state-region change broadcast rate. Third, we derive the distribution of packet delivery time as a function of LS-related traffic rates by characterizing the hexagonal mesh topology and the virtual cut-through capability of HARTS. Finally, we derive the distribution of task waiting time (the time a task is queued for execution plus the time it would spend if the task is to be transferred), from which the probability of a task failing to complete in time, called the probability of dynamic failure, can be computed. The results obtained from our analytic models are verified through event-driven simulations, and can be used to study the effects of varying various design parameters on the performance of LS while considering the details of LS-related communication activities

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 7 )

Date of Publication:

Jul 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.