By Topic

Deadlock detection by fair reachability analysis: from cyclic to multi-cyclic protocols (and beyond?)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hong Liu ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; Miller, R.E. ; van der Schoot, H. ; Ural, H.

We generalize the technique of fair reachability analysis to multi-cyclic protocols modeled as networks of communicating finite state machines, where a number of cyclic protocols are interconnected in such a way that any two component cyclic protocols share at most one process and each channel in the protocol belongs to exactly one component cyclic protocol. By composing the fair reachability relations of the component cyclic protocols, we prove that the set of fair reachable states of a multi-cyclic protocol is exactly the set of reachable states that are of equal channel length with respect to each of its component cyclic protocols. As a result, each deadlock state is fair reachable, and deadlock detection is decidable for the class of multi-cyclic protocols whose fair reachable state spaces are finite. Under the assumption that the underlying communication topology of a protocol is strongly connected, we show that fair reachability analysis is inherently infeasible for logical correctness validation beyond multi-cyclic protocols

Published in:

Distributed Computing Systems, 1996., Proceedings of the 16th International Conference on

Date of Conference:

27-30 May 1996