Cart (Loading....) | Create Account
Close category search window
 

Effects of grain size, hardness, and stress on the magnetic hysteresis loops of ferromagnetic steels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwun, H. ; Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78284 ; Burkhardt, G.L.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.338093 

Effects of grain size, hardness, and stress on the magnetic hysteresis loops of AISI 410 stainless steel and SAE 4340 steel specimens were investigated experimentally. It was observed that both hardness and stress significantly influenced the hysteresis loops, while the grain size had a minimal effect. For each material, the mechanically harder specimen was more difficult to magnetize. Upon application of uniaxial stress, the magnetic induction increased under tension and decreased under compression, with the sides of the hysteresis loops becoming inclined more toward the vertical axis under tension and the horizontal axis under compression. For each material, the effects of stress on the hysteresis loops were greater for the mechanically softer specimen and exhibited an inverse relationship to the hardness. The effects of stress were not dependent on grain size.

Published in:

Journal of Applied Physics  (Volume:61 ,  Issue: 4 )

Date of Publication:

Feb 1987

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.