By Topic

Temperature and modulation characteristics of resonant-cavity light-emitting diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
E. F. Schubert ; AT&T Bell Labs., Murray Hill, NJ, USA ; N. E. J. Hunt ; R. J. Malik ; M. Micovic
more authors

Resonant-cavity light-emitting diodes (RCLED) are novel, high-efficiency light-emitting diodes which employ optical microcavities. These diodes have higher intensities and higher spectral purity as compared to conventional LEDs. Analytical formulas are derived for the enhancement of the spontaneous emission along the optical axis of the cavity. The design rules for high-efficiency operation of RCLEDs are established. The temperature dependence of the emission intensity is analyzed in the range 20-80° and it is described by an exponential dependence with a characteristic temperature of 112 K. The modulation characteristics of RCLEDs exhibit 3 dB frequencies of 580 MHz. Eye diagrams at transmission rates of 622 Mb/s are wide open indicating the suitability of RCLEDs for high-speed data transmission

Published in:

Journal of Lightwave Technology  (Volume:14 ,  Issue: 7 )