By Topic

Crosstalk reduction in intersecting rib waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daly, M.G. ; Centre for Electrophotonic Mater. & Devices, McMaster Univ., Hamilton, Ont., Canada ; Jessop, P.E. ; Yevick, D.

A numerical study of the throughput and crosstalk in intersecting semiconductor rib waveguides was carried out using the beam propagation method. The fraction of the optical power that couples out of one input waveguide and into the crossed waveguide falls to below two percent for crossing angles greater than four degrees. A simple modification to the waveguide shape at the X-crossing region was found to reduce the crosstalk for crossing angles between four and ten degrees. The crosstalk to throughput ratio is reduced by up to a factor of nine while the throughput is reduced by, at most, a few percent. In device structures that combine X-crossings with curved waveguide sections this permits greater design flexibility and improved overall loss and crosstalk performance

Published in:

Lightwave Technology, Journal of  (Volume:14 ,  Issue: 7 )