By Topic

Explosive containment with spherically tamped powders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Glenn, L.A. ; Lawrence Livermore National Laboratory, Physics Department, University of California, P.O. Box 808, Livermore, California 94550

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.337598 

An effective technique for maximizing the explosive charge that a given container can safely handle is to fill the space between the charge and the container walls with a porous medium or a powder. Using the wrong powder, however, can be worse than using no powder at all. Moreover, a powder‐filled container that performs very well with a small charge may also be worse than a powderless system when the charge is increased. An analysis of this problem is developed with the aim of identifying appropriate buffer material properties and the conditions under which breakdown occurs. The results are compared with various experiments performed with graphite powder, coke chunks, granular salt, snow, and vermiculite.

Published in:

Journal of Applied Physics  (Volume:60 ,  Issue: 10 )