By Topic

Approximating the Minimum Connected Dominating Set in Stochastic Graphs Based on Learning Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Torkestani, J.A. ; Arak Branch, Dept. of Comput. Eng., Islamic Azad Univ., Arak ; Meybodi, M.R.

The minimum connected dominating set (MCDS) of a given graph G is the smallest sub-graph of G such that every vertex in G belongs either to the sub-graph or is adjacent to a vertex of the sub-graph. Finding the MCDS in an arbitrary graph is a NP-Hard problem, and several approximation algorithms have been proposed for solving this problem in deterministic graphs, but to the best of our knowledge no work has been done on finding the MCDS in stochastic graphs. In this paper, the MCDS problem in the stochastic graphs is first introduced, and then a learning automata-based approximation algorithm called SCDS is proposed for solving this problem when the probability distribution function of the vertex weight is unknown. It is shown that by a proper choice of the parameters of the proposed algorithm, the probability with which the proposed algorithm find the MCDS is close enough to unity. The simulation results show the efficiency of the proposed algorithm in terms of the number of samplings.

Published in:

Information Management and Engineering, 2009. ICIME '09. International Conference on

Date of Conference:

3-5 April 2009