By Topic

A Modified FCM Algorithm for MRI Brain Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ping Wang ; Dept. Electron. Inf. Eng., Nanchang Univ., Nanchang ; HongLei Wang

Image segmentation is often required as a preliminary and indispensable stage in the computer aided medical image process, particularly during the clinical analysis of magnetic resonance (MR) brain image. Fuzzy c-means (FCM) clustering algorithm has been widely used in many medical image segmentations. However, the conventionally standard FCM algorithm is sensitive to noise because of not taking into account the spatial information. To overcome the above problem, a modified FCM algorithm (called mFCM later) for MRI brain image segmentation is presented in this paper. The algorithm is realized by incorporating the spatial neighborhood information into the standard FCM algorithm and modifying the membership weighting of each cluster. The proposed algorithm is applied to both artificial synthesized image and real image. Segmentation results not only on synthesized image but also MRI brain image which degraded by Gaussian noise and salt-pepper noise demonstrates that the presented algorithm performs more robust to noise than the standard FCM algorithm.

Published in:

Future BioMedical Information Engineering, 2008. FBIE '08. International Seminar on

Date of Conference:

18-18 Dec. 2008