By Topic

Sensor Data Fusion Using DSm Theory for Activity Recognition under Uncertainty in Home-Based Care

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyun Lee ; Comput. Sci. & Eng., Univ. of Texas at Arlington, Arlington, TX ; Jae Sung Choi ; Elmasri, R.

Reliable contextual information of remotely monitored patients should be generated to prevent hazardous situations and to provide pervasive services in home-based care. This is difficult for several reasons. First, low level data obtained from heterogeneous sensors have different degrees of uncertainty. Second, generated contexts can be corrupted or conflicted even if they are acquired by simultaneous operations. In this paper, we utilize Dezert-Smarandache theory (DSmT) as an evidence fusion approach to reduce ambiguous or imperfect information then to get higher belief levels in the data fusion process of contextual information. To analyze the improvement of DSmT fusion process, we compare DSmT with Dempster-Shafer theory (DST) using PCR5 rule of combination and Dempster's rule of combination respectively.

Published in:

Advanced Information Networking and Applications, 2009. AINA '09. International Conference on

Date of Conference:

26-29 May 2009