By Topic

Characterizing and Correcting the Cross-Talk Effect on Depth Measurement in the NCT Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)

The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma ray (0.2-10 MeV) telescope designed to study astrophysical sources of nuclear line emission and polarization. The heart of NCT is an array of 12 cross-strip germanium detectors, designed to provide 3D positions for each photon interaction with full 3D position resolution to 1.6 mm3. The x and y positions are provided by the orthogonal strips, and the interaction depth (z position) in the detector is measured to an accuracy of 0.4 mm FWHM using the relative timing of the anode and cathode charge collection signals. The charge collection signals are affected by cross-talk when interactions occur in adjacent strips, altering the timing measurement in those interactions. We simulated this effect in our NCT detectors, and have developed a method to correct the timing information. Here we present the simulation and the correction results.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 3 )