Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Low-Afterglow, High-Refractive-Index Liquid Scintillators for Fast-Neutron Spectrometry and Imaging Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Lauck, R. ; Phys.-Tech. Bundesanstalt, Braunschweig ; Brandis, M. ; Bromberger, B. ; Dangendorf, V.
more authors

For ion and neutron spectrometry and imaging applications at a high intensity pulsed laser facility, fast liquid scintillators with very low afterglow are required. Furthermore, neutron imaging with fiber (or liquid-core) capillary arrays calls for scintillation materials with high refractive index. To this end, we have examined various combinations of established mixtures of fluors and solvents, that were enriched alternatively with nitrogen or oxygen. Dissolved molecular oxygen is known to be a highly effective quenching agent, that efficiently suppresses the population of the triplet states in the fluor, which are primarily responsible for the afterglow. For measuring the glow curves of scintillators, we have employed the time-correlated single photon counting (TCSPC) technique, characterized by high dynamic range of several orders of magnitude in light intensity. In this paper we outline the application for the fast scintillators, briefly present the scintillation mechanism in liquids, describe our specific TCSPC method and discuss the results.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 3 )