Cart (Loading....) | Create Account
Close category search window
 

Characteristics of 3D Micro-Structured Semiconductor High Efficiency Neutron Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bellinger, S.L. ; SMART Lab., Kansas State Univ., Manhattan, KS ; McNeil, W.J. ; Unruh, T.C. ; McGregor, D.S.

Silicon diodes with large aspect ratio perforated micro-structures backfilled with 6LiF show a dramatic increase in neutron detection efficiency beyond that of conventional thin-film coated planar devices. Described in the following are advancements in the technology with increased perforation depths. Perforated silicon diodes with three different etched micro-structure patterns were tested for neutron counting efficiency. The etched micro-structure patterns consisted of circular holes, straight trenches, and continuous sinusoidal waves, with each pattern etched 200 mum deep. Normal incident neutron counting efficiencies were determined to be 9.7%, 12.6%, and 16.2% for circular hole, straight trench, and sinusoidal devices, respectively, at a reverse bias of 3 volts. The perforated neutron detectors demonstrate limited sensitivity to high-energy photon irradiation with a 60Co gamma-ray source. This work is part of on-going research to develop solid-state semiconductor neutron detectors with high detection efficiencies and uniform angular responses.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.