By Topic

High Spatial and Temporal Resolution Neutron Imaging With Microchannel Plate Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oswald H. W. Siegmund ; Space Sci. Lab., UC Berkeley, Berkeley, CA ; John V. Vallerga ; Anton S. Tremsin ; W. Bruce Feller

Special microchannel plates (MCPs) developed by Nova Scientific Inc. incorporate high efficiency neutron conversion materials into the MCP to provide a high neutron stopping power. 10B and natGd have high interaction cross sections for thermal neutrons and their incorporation into MCP glass is a convenient way to make efficient MCPs for neutron detection with high spatial resolution. We have evaluated neutron event counting 2D imaging detectors using these MCPs with a cross delay line readout, cross strip readout, and a Medipix2 readout. Tests at several reactors with the cross delay line and cross strip readouts have established spatial resolution with neutrons as good as ~30 microns FWHM over a 27 mm diameter detector, with event rates approaching 1 MHz, low fixed pattern noise, event time tagging of 25 ns and intrinsic background rates of < 0.05 events cm-2 sec-1. Evaluation of neutron sensing MCP detector with Medipix2 readout (14 mm2) has allowed operation at high counting rates (500 MHz) with the spatial resolution limited by the 55 micron pixel size of the Medipix2 readout. We have also used the Medipix2 for centroiding of neutron events to sub pixel resolution to obtain better spatial resolution (< 15 mum) for neutrons at reduced event rates (100 kHz). Initial measurements of thermal neutron detection efficiencies give values of 20% to 25% for thermal neutrons and 45% for cold neutrons without optimization of the detection geometry. Preliminary tests with shielding and a LaBr scintillator to gate neutron detections in coincidence with gamma rays produced by neutron interactions has enabled gamma ray rejection factors of 3 times 104 to be achieved. Further improvements in the neutron detection efficiency and gamma ray discrimination efficiency can be gained by optimization of the geometrical and electronic configurations.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 3 )