By Topic

Investigation of ZnO-Based Polycrystalline Ceramic Scintillators for Use as \alpha -Particle Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
John S. Neal ; Oak Ridge Nat. Lab., Oak Ridge, TN ; David M. DeVito ; Beth L. Armstrong ; Mei Hong
more authors

ZnO-based scintillators are particularly well suited for use as the associated particle detector in a deuterium-tritium (D-T) neutron generator. Application requirements include the exclusion of organic materials, outstanding timing resolution, and high radiation resistance. ZnO, ZnO:Ga, ZnO:In, ZnO:In,Li, and ZnO:Er,Li have demonstrated fast (sub-nanosecond) decay times with relatively low light yields. ZnO:Ga has been used in a powder form as the associated particle detector for a D-T neutron generator. Unfortunately, detectors using powders are difficult to assemble and the light yield from powders is less than satisfactory. Single-crystal ZnO of sufficient size has only recently become available. New applications for D-T neutron generators require better timing resolution and higher count rates than are currently available with associated particle detectors using YAP:Ce as the scintillator. Recent work suggests that ZnO-based scintillators can provide alpha-particle-excited light yields comparable to YAP:Ce scintillators. ZnO-based polycrystalline ceramic scintillators offer the advantages of high light yield, ease of fabrication, low cost, and robust mechanical properties. Precursor powders used in these studies include ZnO and ZnO:Ga powders synthesized using solution-phase, urea precipitation, and combustion synthesis techniques as well as ZnO powder from a commercial vendor. Precursor powders have been sintered using uniaxial hot pressing and spark plasma sintering techniques. Photoluminescence measurements have confirmed that, for most samples, the emissions from these sintered bodies consist primarily of slow, visible emissions rather than the desired sub-nanosecond near-band-edge emissions. Subsequent hydrogen treatments have shown significant improvements in the luminescence characteristics of some ceramic bodies, while other samples have shown no change in luminescence.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 3 )