By Topic

A Comparison of Fast Inorganic Scintillators for Thermal Neutron Analysis Landmine Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
John E. McFee ; Defence R&D Canada-Suffield, Medicine Hat, AB ; Anthony A. Faust ; H. Robert Andrews ; Vitaly Kovaltchouk
more authors

The Improved Landmine Detector System, a militarily fielded, teleoperated vehicle-mounted multi-sensor landmine detector, uses a thermal neutron analysis (TNA) detector to confirm the presence of a mine by detecting the bulk nitrogen in its explosives. To improve the nitrogen sensitivity or measurement times of the TNA detector, higher gamma ray rates will be required. The chief bottleneck to achieving the maximum possible performance from the present TNA or future versions is the relatively slow fluorescent decay time of the NaI(Tl) scintillators which are currently used. An experimental investigation was undertaken to compare a number of modern, fast inorganic scintillators to NaI(Tl) with respect to parameters relevant to TNA landmine detection, including efficiency, energy resolution, linearity, available size and cost. This paper presents results in the context of the high-rate, high-gamma-energy environments expected in such a TNA application. Large (7.62 cm times 7.62 cm) LaBr3:Ce scintillators, and to a lesser degree LaCl3:Ce, were found to stand-out as as the principal candidates for the detector upgrade to the TNA confirmation system. Their properties also make them ideal candidates for fast neutron analysis and associated particle imaging bulk explosives detectors.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 3 )