By Topic

LENDA: A Low Energy Neutron Detector Array for Studies of (p,n) Reactions With Radioactive Beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Perdikakis, G. ; Nat. Supercond. Cyclotron Lab., Michigan State Univ., East Lansing, MI ; Austin, S.M. ; Bazin, D. ; Caesar, C.
more authors

Charge-exchange reactions at intermediate energies have been used extensively in nuclear structure studies as a sensitive probe of the spin-isospin response of nuclei. Experimental investigations have been mostly limited to stable targets. There are, however, compelling scientific arguments to extend these studies to unstable nuclei. The Low Energy Neutron Detection Array (LENDA) is designed to facilitate the study of (p,n) charge exchange reactions in inverse kinematics using unstable beams. The array, which is designed to measure neutron energies and angles with high detection efficiencies, is currently under development at the National Superconducting Cyclotron Laboratory (NSCL). The final array will consist of 24 plastic scintillator bars each with dimensions of 300 times 45 times 25 mm. The neutron energy will be determined by the time-of-flight technique, while the position of interaction will be deduced using the timing and energy information from photomultipliers attached to both ends of each bar. A prototype of the final array has been constructed and characterized in a simple test setup. Results of test measurements and simulations have demonstrated a neutron energy threshold of <130 keV and overall time (position) resolution of les 1 ns (~ 4 cm).

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 3 )