By Topic

Frequency response theory for multilayer photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. N. Hollenhorst ; AT&T Bell Lab., Murray Hill, NJ, USA

An exact solution is developed for the frequency response of photodiodes composed of multiple spatially uniform layers. Each layer is analyzed separately to obtain a set of linear response coefficients. The response of the multilayer diodes is calculated using matrix algebra. Effects of carrier transit, electron and hole trapping, avalanche decay, and finite absorption length are included in the analysis. The results of R.B. Emmons (1967) and G. Lucovsky et al. (1958) for avalanche photodiodes (APDs) and p-i-n's, respectively, are obtained as special cases. The theory is illustrated by applying it to the separated absorption and multiplication

Published in:

Journal of Lightwave Technology  (Volume:8 ,  Issue: 4 )