We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Cooperative Multicell Zero-Forcing Beamforming in Cellular Downlink Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Somekh, O. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ ; Simeone, O. ; Bar-Ness, Y. ; Haimovich, A.M.
more authors

In this work, a multicell cooperative zero-forcing beamforming (ZFBF) scheme combined with a simple user selection procedure is considered for the Wyner cellular downlink channel. The approach is to transmit to the user with the ldquobestrdquo local channel in each cell. The performance of this suboptimal scheme is investigated in terms of the conventional sum-rate scaling law and the sum-rate offset for an increasing number of users per cell. We term this characterization of the sum-rate for large number of users as high-load regime characterization, and point out the similarity of this approach to the standard affine approximation used in the high-signal-to-noise ratio (SNR) regime. It is shown that, under an overall power constraint, the suboptimal cooperative multicell ZFBF scheme achieves the same sum-rate growth rate and slightly degraded offset law, when compared to an optimal scheme deploying joint multicell dirty-paper coding (DPC), asymptotically with the number of users per cell. Moreover, the overall power constraint is shown to ensure in probability, equal per-cell power constraints when the number of users per-cell increases.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 7 )