Cart (Loading....) | Create Account
Close category search window
 

One Shot Schemes for Decentralized Quickest Change Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hadjiliadis, O. ; Dept. of Math., City Univ. of New York, New York, NY ; Hongzhong Zhang ; Poor, H.V.

This work considers the problem of quickest detection with N distributed sensors that receive sequential observations either in discrete or in continuous time from the environment. These sensors employ cumulative sum (CUSUM) strategies and communicate to a central fusion center by one shot schemes. One shot schemes are schemes in which the sensors communicate with the fusion center only once, via which they signal a detection. The communication is clearly asynchronous and the case is considered in which the fusion center employs a minimal strategy, which means that it declares an alarm when the first communication takes place. It is assumed that the observations received at the sensors are independent and that the time points at which the appearance of a signal can take place are different. Both the cases of the same and different signal distributions across sensors are considered. It is shown that there is no loss of performance of one shot schemes as compared to the centralized case in an extended Lorden min-max sense, since the minimum of N CUSUMs is asymptotically optimal as the mean time between false alarms increases without bound. In the case of different signal distributions the optimal threshold parameters are explicitly computed.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.