By Topic

A Generic Data-Driven Nonparametric Framework for Variability Analysis of Integrated Circuits in Nanometer Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mukhopadhyay, S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA

We present a generic data-driven nonparametric analyzer (GDNA) to estimate the impact of process variations on device properties and circuit functionalities in nanometer technologies. The mathematical framework of GDNA uses a kernel estimator that eliminates the need for a priori assumption of the nature of variation (i.e., no a priori choice is required for the density of a random variable). Furthermore, a generic tail probability estimator is developed that uses the kernel estimator to predict low occurrence probabilities using a small set of observed samples. Verifications using statistical simulations show that GDNA can reliably predict variability in device/circuit properties and can hence facilitate technology development and circuit design under process variation.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 7 )