By Topic

Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsybeskov, L. ; Electr. & Comput. Eng. Dept., New Jersey Inst. of Technol., Newark, NJ ; Lockwood, D.J.

In this paper, we review the present status of light emitters based on SiGe nanostructures. In order to be commercially valuable, these light emitters should be efficient, fast, operational at room temperature, and, perhaps most important, compatible with the ldquomainstreamrdquo complementary metal-oxide-semiconductor (CMOS) technology. Another important requirement is in the emission wavelength, which should match the optical waveguide low-loss spectral region, i.e., 1.3-1.6 mum. Among other approaches, epitaxially grown Si/SiGe quantum wells and quantum dot/quantum well complexes produce efficient photoluminescence and electroluminescence in the required spectral range. Until recently, the major roadblocks for practical applications of these devices were strong thermal quenching of the luminescence quantum efficiency and a long carrier radiative lifetime. The latest progress in the understanding of physics of carrier recombination in Si/SiGe nanostructures is reviewed, and a new route toward CMOS compatible light emitters for on-chip optical interconnects is proposed.

Published in:

Proceedings of the IEEE  (Volume:97 ,  Issue: 7 )