By Topic

Image Segmentation Based on GrabCut Framework Integrating Multiscale Nonlinear Structure Tensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shoudong Han ; Inst. of Syst. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Wenbing Tao ; Desheng Wang ; Xue-Cheng Tai
more authors

In this paper, we propose an interactive color natural image segmentation method. The method integrates color feature with multiscale nonlinear structure tensor texture (MSNST) feature and then uses GrabCut method to obtain the segmentations. The MSNST feature is used to describe the texture feature of an image and integrated into GrabCut framework to overcome the problem of the scale difference of textured images. In addition, we extend the Gaussian Mixture Model (GMM) to MSNST feature and GMM based on MSNST is constructed to describe the energy function so that the texture feature can be suitably integrated into GrabCut framework and fused with the color feature to achieve the more superior image segmentation performance than the original GrabCut method. For easier implementation and more efficient computation, the symmetric KL divergence is chosen to produce the estimates of the tensor statistics instead of the Riemannian structure of the space of tensor. The Conjugate norm was employed using Locality Preserving Projections (LPP) technique as the distance measure in the color space for more discriminating power. An adaptive fusing strategy is presented to effectively adjust the mixing factor so that the color and MSNST texture features are efficiently integrated to achieve more robust segmentation performance. Last, an iteration convergence criterion is proposed to reduce the time of the iteration of GrabCut algorithm dramatically with satisfied segmentation accuracy. Experiments using synthesis texture images and real natural scene images demonstrate the superior performance of our proposed method.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 10 )