By Topic

Palmprint Recognition Using 3-D Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
David Zhang ; Dept. of Comput., Hong Kong Polytech. Univ., Kowloon, China ; Guangming Lu ; Wei Li ; Lei Zhang
more authors

Palmprint has proved to be one of the most unique and stable biometric characteristics. Almost all the current palmprint recognition techniques capture the 2-D image of the palm surface and use it for feature extraction and matching. Although 2-D palmprint recognition can achieve high accuracy, the 2-D palmprint images can be counterfeited easily and much 3-D depth information is lost in the imaging process. This paper explores a 3-D palmprint recognition approach by exploiting the 3-D structural information of the palm surface. The structured light imaging is used to acquire the 3-D palmprint data, from which several types of unique features, including mean curvature image, Gaussian curvature image, and surface type, are extracted. A fast feature matching and score-level fusion strategy are proposed for palmprint matching and classification. With the established 3-D palmprint database, a series of verification and identification experiments is conducted to evaluate the proposed method. The results demonstrate that 3-D palmprint technique has high recognition performance. Although its recognition rate is a little lower than 2-D palmprint recognition, 3-D palmprint recognition has higher anticounterfeiting capability and is more robust to illumination variations and serious scrabbling in the palm surface. Meanwhile, by fusing the 2-D and 3-D palmprint information, much higher recognition rate can be achieved.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:39 ,  Issue: 5 )